If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-10x-36=0
a = 2; b = -10; c = -36;
Δ = b2-4ac
Δ = -102-4·2·(-36)
Δ = 388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{388}=\sqrt{4*97}=\sqrt{4}*\sqrt{97}=2\sqrt{97}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{97}}{2*2}=\frac{10-2\sqrt{97}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{97}}{2*2}=\frac{10+2\sqrt{97}}{4} $
| x=0.8x=72 | | 5y-19=4y-4 | | 2(4+6m)+m=112 | | 8(x+5)=-176 | | -2(c-2)=-3-2c | | 5(x-6)+8=7x=4 | | 8/5z=12 | | t-4/2=2 | | 10w+w-2w=18 | | 0.02+0.5z=-0.3 | | -4x-7=14 | | 8x=176+40 | | (b/9)-1=-2 | | 88=-4(-5+a) | | 7x-10x+30=3 | | 10j−9j=11 | | 5x+10-2x+2=6x+9 | | 6-8x=6x=8x-24 | | ((-8-(-3k)/2=11)) | | 9a-5a-30=-14 | | 3x2=-55 | | 8(s+59)=0 | | -2(3x+27)=-6(x+9) | | -8-(-3k)/2=11 | | -8c+61=11 | | 4h-29=47 | | 7(6-z)=-z | | 7(2h-5)=40 | | 4w+15=79 | | 81+4v=13v | | 8z-7=2z-7+5z | | 4a/5=16 |